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ABSTRACT:
The sound absorption coefficient (SAC) of materials measured in a reverberation room is affected by both the

intrinsic properties of the material and geometrical dimensions of the sample. A different size of the same material

may produce a different SAC primarily due to the edge effect phenomenon. In this research, the experimental data

from multiple laboratories was analyzed to evaluate the influence of the edge effect. An empirical function was

established based on these measurement data and the linear relationship between the SAC and the relative edge

length. Thomasson’s method, the two geometric methods, and the analytical method were used to estimate the SAC

of an absorber from measurements on a different size sample and compared with results obtained using the empirical

function. The results show that the proposed empirical method is a reliable way to predict the SAC of a sample from

measurements on a different size sample of the same material, which only requires the thickness, density, and size of

the material. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0022384
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I. INTRODUCTION

The sound absorption coefficient (SAC), as measured in

a reverberation room, depends not only on the material

properties but also depends on the geometrical properties of

the tested sample. A well-known observation is the measure-

ment result of the SAC in a reverberation room, where it

exceeds 1. Furthermore, varying the size of samples made

of the same material can result in substantial differences in

SAC measurements, especially for materials with high

sound absorption. This occurrence is referred to as the “edge

effect” and was discovered by Sabin in the early 1900s. In

theory, it is caused by the diffraction of the incident wave at

the discontinuity in the imaginary part of the specific acous-

tic admittance at the edges of the sample. Therefore, the

sound pressure incident on the sample is greater due to the

sudden change of the imaginary part of the specific acoustic

admittance at the edges, and this increase leads to additional

absorption near the edges of the sample. According to the

early literature,1–7 there is a linear relationship between

the SAC obtained by the reverberation room method and the

sample’s size as shown in the following equation:

a ¼ a0 þ bE; (1)

where a is the SAC of a finite size sample measured in a

reverberation room, a0 is the true absorption coefficient

whose value may be equal to the absorption coefficient of an

infinite-size sample, b is a constant, and E is the sample’s

relative edge length which is the ratio of the perimeter

divided by the area of the sample. The details of the process

of using linear regression to obtain the constants is shown in

Fig. 1. Measurement of four different size samples from the

identical material allows one to graph SACs as a function of

the relative edge length and fit them with linear regression

lines, where b is the slope of the linear regression and a0 is

the constant of the linear regression.

Since the early 1900s, numerous theoretical and experi-

mental studies have been conducted on the edge effect phe-

nomenon. A theoretical study by Morse and Bolt8 showed

that, for normally incident sound, the additional absorption

caused by sound diffraction is approximately equal to the

product of the quarter wavelength of the sound, the edge

length of the specimen and the difference of the acoustic

susceptance of the material and the acoustic susceptance of

the surface surrounding the sample. Cook7 plotted the SAC

as a function of the area from experimental data to fit the

linear regression of Eq. (1) and calculated the values of b
and the corresponding a0. Similar research was performed

by Daniel,3 where in addition to proving the linear relation-

ship, he measured the distribution of sound pressure at the

surface of a square panel and suggested that the additional

absorption is proportional to the inverse of the square root

of the sample’s area. Ten Wolde6 verified the linear relation-

ship by comparing the a0 obtained from impedance tube

measurements with those extrapolated from reverberation

room measurements. This research confirmed that thea)Email: john.davy@rmit.edu.au
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extrapolation of the linear relationship can be used to esti-

mate the true absorption coefficient a0. Bruijn9 tried to

explain the linear relationship by using a mathematical

model. He derived a formulation to examine the interaction

between the two local edge diffraction fields of an acoustic

strip and he found that the additional absorption heavily

depends on the sample’s geometry for small patches.

Bartel10 compared experimental data with theoretical data

of the random incidence SAC, confirming that both results

increase linearly with the relative edge length. More

researchers including Kosten,1 Khul,2 Gomperts,4 Esche,5

Dekker,11 Vercammen and Lautenbach,12 and Hughes

et al.13 observed the linear relationship by plotting the SAC

data as a function of the relative edge length of the speci-

men. Despite numerous researchers calculating b and a0,

few have put them into practical use. In fact, this linear rela-

tionship can be utilized to estimate the random incidence

SAC of samples with different sizes of the same material. It

might act as a complement to the ISO 354 standard,14 which

imposes restrictions on the size of the test sample.

Several methods have been established to put the theory

of edge effect into practice. Thomasson15 predicted the SAC

of one size sample from other size samples of the same

material by introducing the maximum SAC that only

depends on the sample’s geometrical properties. It means

that the SAC of different shapes of the same material can be

determined by an equivalent of the maximum SAC and the

SAC of an infinite-size sample can also be calculated. The

draft version of the new ISO 354 standard incorporates

Thomasson’s approach and proposes a simpler method for

estimation; however, this draft was ultimately rejected in

spring of 2023. It assumes the constant b is one-quarter of

the wavelength (1
4
k), which means that the width of the

extended virtual surface along the edge (the area of addi-

tional absorption) is equal to the value of 1
4
k. A comparison

of 1
4
k with the value calculated from Thomasson’s method

was made by Zhao et al.,16 who extended Thomasson’s the-

ory to the non-locally reacting material, which indicated that
1
4
k is not correct for low SACs. Additionally, they modified

Thomasson’s linear interpolation method to improve the

accuracy of predicting the SAC of a large size sample from

a small size sample. It also gives corrections which are dif-

ferent for increasing and decreasing sizes. While their

approximate analytical approach does decrease the compu-

tation time, it still has some disadvantages such as compli-

cated formulas and limited available material experimental

data. Sauro et al.17 plotted the absorption divided by the

perimeter as a function of the area divided by the perimeter

and fitted to data points using linear regression line for each

one-third octave band. They presented a new equation to

FIG. 1. (Color online) (a) The measured SAC of the same material with different sizes. (b) Relationship between the SAC and the relative edge length, with

linear regression lines for fitting. (c) The slope of the linear regression. (d) The constant of the linear regression.
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estimate the sound absorption of a material of any size, but

their approach requires at least two (and preferably more)

different sample sizes to be measured in a reverberation

room initially. While this is the preferred method if rever-

beration measurements on multiple size samples are avail-

able, the aim of this paper is to develop a method using a

measurement on only one size of sample whose correction

is independent of whether the sample size is being increased

or decreased. Other literature related to the edge effect

includes enhancing the theoretical prediction of the random

incidence SAC for sound-absorbing materials or making

measurements on a small sample group of theatre

chairs.18–20 Despite this, there is still room for further exam-

ination and study. Based on the discussions presented, the

implementation of the theory for practical applications

remains challenging.

Given this context, the goal of this study is to formulate

a straightforward empirical equation for calculating the ran-

dom incidence SAC of a material for different sizes of sam-

ples. The critical aspect of this equation is determining an

average value of the constant b which varies between mate-

rials due to its connection to material properties.

Consequently, the research described in this paper is com-

menced by collecting all available data on the SAC of dif-

ferent size samples of the same material in the literature for

24 materials and different laboratories to investigate the

characteristics of the relative edge length multiplier b and

b=k. In addition, an empirical function is proposed utilizing

all the collected experimental data, which only requires the

thickness and density of the material. It allows one to predict

the SAC of a sample of one size from measurements on

another size of the same sound absorbing material without

repeated measurements or complicated calculations. None

of the other material properties, such as the acoustic imped-

ance or the six parameters of the Johnson-Champoux-

Allard-Lafarge model21 are needed. The feasibility of the

proposed method is verified by comparing it with other esti-

mation methods including Thomasson’s method, the two

geometric methods, and the analytical method proposed by

Zhao et al.16

This paper begins by describing the theory of the edge

effect estimation methods including linear relationship

method, Thomasson’s method, and geometric method in

Sec. II. The database of materials and data analysis is

described in Sec. III. Section IV presents the development

of the empirical equation and Sec. V compares the results

from the proposed empirical function with the results from

the other estimation methods. Finally, some further sugges-

tions are made.

II. METHODOLOGY

A. Linear relationship method

An equation for calculating the sound absorption of one

size of sample from the measured sound absorption of two

other sizes of samples of the same materials was derived by

Sauro et al.,17

Ax ¼

A2

P2
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P1

S2

P2

� S1
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0
BB@
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CCA� Sx þ
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S2
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(2)

where A is the sound absorption, S is the area, and P is the

perimeter. The subscript x denotes the sample size whose

sound absorption is being calculated, and subscript 1 and

subscript 2 denotes the two different sample sizes which

have been measured in a reverberation room. In this study,

the authors rewrite Eq. (2). First, divide both sides by Sx,

and the equation becomes

Ax

Sx
¼ Cþ A1

P1

� C� S1

P1

� �
� Px

Sx
; (3)

where

C ¼

A2

P2

� A1

P1

S2

P2

� S1

P1

: (4)

Then, make

k ¼ A1

P1

� C� S1

P1

: (5)

Equation (3) can be written as

Ax

Sx
¼ Cþ k � Px

Sx
: (6)

It is obvious that the Eq. (6) is similar with Eq. (1)

because Ax=Sx is the SAC to be calculated and Px=Sx is the

relative edge length. Consequently, as long as the SACs and

the geometry of two different sample sizes of the material

are known, it is possible to estimate the SAC of other size

samples of the same material. Looking at Eq. (1), once the

constant b is known, the SAC of other size samples can be

estimated from the SAC of one size sample as follows:

ax ¼ a� bEð Þ þ bEx ¼ aþ b Ex � Eð Þ; (7)

where ax is the SAC of the size of sample to be predicted,

and its relative edge length is Ex. a is the SAC of a sample

measured in the reverberation room with the relative edge

length E. The width of the area subject to the increased pres-

sure is proportional to the wavelength of the incidence

sound.22 Thus, it makes sense to divide b by the sound

wavelength k. Then, Eq. (1) becomes

a ¼ a0 þ lkE; (8)

where l ¼ b=k and Eq. (7) can be written as

ax ¼ aþ lk Ex � Eð Þ: (9)

l is often assumed to be equal to 0.25.
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B. Thomasson’s method

The edge effect causes the sample to be perceived as

having a larger surface area than its actual size, commonly

known as the virtual area. The factor K is expressed as the

ratio between the virtual area S0 and the actual area S of the

sample, as depicted in the following equation:12,15,16

K ¼ S0

S
¼ 1þ kE

4
: (10)

Then, the SAC of an infinite sample can be expressed

as

a0 ¼
a
K
: (11)

Similarly, for a sample size whose SAC is to be pre-

dicted, the factor Kp can be written as

KP ¼ 1þ kEx

4
: (12)

The absorption coefficient of a material aP with a size

different from that measured in the reverberation room can

be estimated using linear interpolation in a0 between equat-

ing the a0 values for the two different size samples when

a0 ¼ 1 and equating the SACs for the two different size

samples when a0 ¼ 0 using the following equation:

aP ¼ aM a0

KP

KM
þ 1� a0ð Þ

� �
; (13)

where KM is calculated for the measured sample using Eq.

(10) and aM is the SAC of the measured sample. This

method is based on one of Thomasson’s proposed

approaches.15 While this method utilizes one-quarter wave-

length for extending the virtual surface, it is worth noting

that Thomasson’s theory also presents a more intricate

approach for calculating this extension width.

C. Geometric method

In the geometric method, the extra area is assumed to

be the area outside the specimen which has a maximum dis-

tance of some value (usually one quarter of a wavelength)

from the specimen in a direction normal to one of the edges

of the rectangular specimen.5,16,23 This means that the exter-

nal squares at each of the four corners whose side length is

the maximum distance are not included in the extra external

area. The extra external area is considered to be the extra

area from which the specimen can absorb sound due to the

diffraction effect. However, the other interpretation is that

the extra area is the area inside the specimen area which

absorbs more sound energy due to the increase in sound

pressure caused by diffraction. This extra area is the area

inside the specimen which has a maximum distance of some

value (usually one quarter of a wavelength) from the speci-

men edge in a direction normal to one of the edges of the

rectangular specimen. In the case of Thomasson’s method,

this interpretation means that the areas of the squares at

each of the four corners whose side length is the maximum

distance is counted twice. There is an argument for counting

the areas of these squares twice because they are within the

maximum normal distance from two edges of the specimen.

However, there is also an argument for not counting these

areas twice and, in this case, it also makes sense not to allow

the strips of extra area due to the opposite edges of the

specimen to overlap. This approach limits the maximum

extra inside area to be equal to the area of the specimen.

Author R.A.H. adopted this approach and found that assum-

ing that the width of the additional area was half of the

wavelength worked well for the materials whose measured

sound absorption he was using for testing. This is not sur-

prising given the known variation of b between different

materials. His equation for the extra virtual area of the mea-

sured sample is

Tm ¼ 2ambm � am � 2dmð Þ bm � 2d0m
� �

: (14)

His equation for the extra virtual area of a sample

whose SAC to be predicted is

Tp ¼ 2apbp � ap � 2dpð Þ bp � 2d0p

� 	
; (15)

where

dm;p ¼

1

2
am;p for am;p < k;

1

2
k for am;p > k

8>><
>>:

(16)

and

d0m;p ¼

1

2
bm;p for bm;p < k;

1

2
k for bm;p > k:

8>><
>>:

(17)

In the above equations, a and b are the side lengths of a

sample. d is the width of strip with a length of a and d0 is the

width of strip with length of b. Subscript m denotes the mea-

sured sample and p denotes the predicted sample.

Subsequently, the SAC of a different-sized sample can be

estimated through measurement of a single-sized sample

using the following equation:

ap ¼ am
SmTp

SpTm
; (18)

where Sm¼ ambm and Sp¼ apbp. This method called the first

geometric method.

Like Thomasson, the author R.A.H. also found it neces-

sary to carry out interpolation as a function of the SAC.

Thus, the intermediate value of the SAC for the measured

sample becomes

a0m ¼ am
Sm

Tm
: (19)
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Then, the equation for the extra virtual area of the mea-

sured sample is

Tm
0 ¼ Sm þ Tm � Smð Þa0m: (20)

The equation for the extra virtual area of a sample

whose SAC to be predicted is

Tp
0 ¼ Sp þ Tp � Spð Þa0m: (21)

Similarly, the second geometric method which uses lin-

ear interpolation is given by

ap
0 ¼ am

SmTp
0

SpTm
0 : (22)

III. EXPERIMENTAL DATA ANALYSIS

This section investigates the phenomenon of the edge

effect using experimental data and compares them with the

theory. To characterize the edge effect of the sound absorb-

ers, this research gathered all the published data on the edge

effect from multiple sources. References 4, 6, and 10–12

directly provided the value of b but for Refs. 13, 15, 17, 24,

and 25 it was necessary to calculate b by using linear regres-

sion on their provided SAC data for each frequency, follow-

ing the procedure in Fig. 1. The samples used, their material

information, the volume of the associated reverberation

room, and the sources of the data are listed in Table I. The

selected samples were installed as one area of material, and

their edges were covered with a non-absorptive material.

This study does not consider the measurement of separated

pieces of material where there are gaps between each sepa-

rated piece of material. The experimental results for samples

H1 to H4 were measured in the Armstrong Acoustics

Laboratory using the ASTM-C423 standard.26 The reverber-

ation room has a volume of 264.7 m3 with total surface area

of 255 m2, and it is equipped with 8 diffuser panels, totalling

a diffuser surface area of 64 m2. It is noteworthy that sam-

ples from two sources, which have similar information

regarding material type, thickness, and density, are believed

to be of the same material, despite being obtained from dif-

ferent participating laboratories. Because of the varying

specimen geometries, quantities of samples of various sizes,

and diverse experimental results, those data are still valuable

and deserving of analysis due to their diversity.

Figure 2(a) displays the edge effect relative parameter b
as function of frequencies for all materials from Table I. At

the first glance, the plot appears to be chaotic, but the most

of data is distributed between 0.2 and 0 in the y axis direc-

tion. The trend of all curves exhibits an increase to a peak

and then slowly decreases. To figure out the influence of the

frequency on the edge effect, the average value of b for each

one-third octave band centre frequency from all samples is

depicted in Fig. 2(b), and the error bars represent the uncer-

tainty of the 95% confidence intervals. There is a peak at

500 Hz, indicating that the edge effect is significant at this

frequency for most materials. It seems likely that the mate-

rial properties of the test specimen may affect the strength

of the edge effect at different frequencies. However, the

TABLE I. The measurements from multiple sources that were analyzed.

Sample Thickness [mm] Density [kg/m3] Quantity of various sizes Material type Volume of reverberation room [m3] Source

H1 50.8 102.84 4 glass wool 264.7 experiment

H2 25.4 193.5 4 mineral wool 264.7 experiment

H3 25.4 102.84 4 glass wool 264.7 experiment

H4 25.4 193.5 4 mineral wool 264.7 experiment

Gomperts, M1 50 100 12 mineral wool 400 Ref. 4

Gomperts, M2 100 100 6 mineral wool 400 Ref. 4

Sauro, S1 25.4 102.84 9 glass wool 275 Ref. 17

Sauro, S2 50.8 102.84 4 glass wool 275 Ref. 17

Sauro, S3 50.8 102.84 4 glass wool 275 Ref. 17

Thomasson 50 50 3 mineral wool 200 Ref. 15

Hughes 50.8 6 5 ultralight foam 291.7 Ref. 13

Kawai 25 32 4 glass wool 317.4 Ref. 24

Bartel, M1 52 50 8 glass wool 425 Ref. 10

Bartel, M2 15 140 8 glass wool 425 Ref. 10

Bartel, M3 13 330 8 weed fiber 425 Ref. 10

Ten Wolde, A 50 100 10 mineral wool 199 Ref. 6

Ten Wolde, B 100 60 10 mineral wool 199 Ref. 6

Ten Wolde, C 38 90 10 straw fibre 199 Ref. 6

Ten Wolde, D 20 90 12 straw fibre 199 Ref. 6

Vercammen 100 44 unknown mineral wool 214 Refs. 12,29

Dekker, M1 16 90 8 straw fibre 33.7 Ref. 11

Dekker, M2 40 60 7 glass wool 33.7 Ref. 11

Northwood 50 100 3 mineral wool unknown Ref. 25

Davern 50 100 3 mineral wool 607 Ref. 27
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additional sound absorption of the materials basically occurs

between 250 and 2000 Hz, which is consistent with the the-

ory, since the difference between the specific acoustic sus-

ceptance of most materials and their surrounding surface

area is lower in the low-frequency range. In the high-

frequency range, the area of the specimen subject to the

increased acoustic pressure is small because the wavelength

of sound in air is small, and thus the edge effect is also

small. However, there is a reasonable discrepancy in experi-

mental data compared to the theory. The uncertainty of the

experimental slope b in the low-frequency range14 is large

due to high measurement uncertainty of the SACs because

of low statistical modal overlap of the reverberation rooms

and the low SACs of most materials. In the high frequency

range, the uncertainty of the experimental slope b is a result

of the small differences between the measured SACs and

moderate experimental uncertainty. Furthermore, the experi-

mental uncertainty could be increased due to varying

amounts of diffusivity between the different reverberation

rooms, especially for highly sound absorbing samples.1,27–29

In conclusion, the impact of the edge effect on the SAC of

materials of varying sizes is found to be more significant at

medium frequencies compared to high and low frequencies,

regardless of whether the SAC values are obtained through

experiment or through theoretical calculation.

Since b is a function of the wavelength, it makes sense

to analyze the distribution of l ¼ b=k for all samples. The

data from Fig. 2(a) divided by the wavelength of the corre-

sponding frequency is shown in Fig. 3(a). Most of the values

of l are in the range from 0 to 0.6. The data generally

exhibit two types of curve trend. One is slowly increasing

and then steady decreasing. The other is to rise and fall

steadily like the first trend at the beginning, and then have

larger fluctuations at the higher frequencies. Those curves

with large oscillations may be caused by experimental

uncertainty. As the frequency increases, parameter l is

increased due to the short wavelength. The mean of the data

and the 95% confidence interval of the mean are demon-

strated in Fig. 3(b). To compare with the theory, the line of

l¼ 0.25 is also shown. In Fig. 3(b), l is close to zero in the

low frequency before increasing to be close to 0.25 in the

mid-frequency range. Above 3 kHz the mean and the uncer-

tainty increase. From 630 Hz to 3.15 kHz, the experimental

mean value of l is close to 0.25, which is consistent with

the assumption that the width of additional area of the effec-

tive absorption surface is approximately equal to 1
4
k. In the

high-frequency range, significant fluctuations are observed,

due to the uncertainty of measurement of the parameter l
when the sound wavelength is short. In conclusion, the quar-

ter wavelength width of the additional apparent area of the

specimen is not correct in the low frequency range. Based

on a review of the measurement database, an improved

method is proposed in Sec. IV.

IV. DEVELOPMENT OF THE EMPIRICAL EQUATION

To estimate the random incidence SAC with different

sizes of the same material, a simple empirical equation was

derived based on measurement data. Due to the influence of

the material properties, the thickness t and the density q of

each material were used. The transformation function for

frequency f is

X ¼
ft

q
q0

� �0:17

c
¼

t
q
q0

� �0:17

k
with q0 ¼ 1

kg

m3
; (23)

where q0 represents the reference density used to normalize

X into a dimensionless quantity and c is the speed of sound

in air. The exponent 0.17 is applied to cluster the measure-

ment data of materials, enhancing the suitability for curve-

fitting optimization. The x axis variable has been changed

from f to X, and the plot of the l as a function of X is

depicted in Fig. 4. Since the vertical scale (y axis) is

FIG. 2. (Color online) (a) The measured edge effect parameter b as a func-

tion of frequency for the materials listed in Table I. (b) The mean of all b as

function of frequency. The error bars represent the 95% confidence

intervals.

FIG. 3. (Color online) (a) The measured edge effect parameter l as a func-

tion of frequency for the materials listed in Table I. (b) The mean of all l as

function of frequency compared with l¼ 0.25. The error bars represent the

95% confidence intervals. Note l is equal to b divided by wavelength.
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logarithmic, the continuity of the data is interrupted by neg-

ative experimental values. One of the reasons for employing

a transformation function is to address the substantial influ-

ence of material thickness. In this study, measurements were

conducted on the same material with varying thicknesses (1,

2, and 4 in.). The observed peaks, resulting from the edge

effect, demonstrated that doubling the thickness caused the

peak absorption frequency to shift down by one octave for

each doubling of thickness, while preserving the shape of

the peak. Experimental data for different thicknesses of the

same material indicated peak frequencies of approximately

1200–1250 Hz for the 1-in. sample, 600–650 Hz for the 2-in.

sample, and 300–325 Hz for the 4-in. sample. By applying

Eq. (23), the impact of thickness variation can be accounted

for in the analysis.

According to the new figure, all the experimental data

show the same trend, although there is a considerable spread

of the data. Based on the shape of the curves and the high

frequency theory, the following mathematical model was

proposed:

l ¼ C1X�C2

� ��C4 þ C3
�C4

h i�C4
�1

: (24)

The values of the constants C1–C4 were determined

using optimization. Other models such as polynomial func-

tions, Gaussian functions or other bell-shaped functions

were also tried but did not work any better. A MATLAB code

was developed to find the constants C1 to C4 that best fitted

all the experimental data, using the nonlinear curve-fitting

algorithm to minimize the mean square differences,30

min
C
kF C; xdatað Þ � ydatak2

2

¼ min
C

X
i

F C; xdataið Þ � ydataið Þ2; (25)

where F is objective function given by Eq. (10). The ele-

ments of the coefficient vector C are the parameters to be

estimated and xdata is the input data such as the frequency,

the speed of sound in air, the sample thickness, and the den-

sity. ydata are edge effect parameters l derived from all the

measured data. i is the number of data. In this paper, the

total number of data points is 391. After data preprocessing,

the number of data points is reduced to 352 due to the elimi-

nation of negative data points.

The four parameters, C1–C4, were determined using

optimization (100.143, 2.835, 0.26, and 1.944, respectively).

Hence l and b could be predicted for any frequency, any

thickness and density of material. Once the SAC of a mate-

rial for one size of sample and its b are known, the SAC of

any size samples of the same material can be estimated

using Eq. (9). Inserting the values of the four constants into

Eq. (24), the final empirical function is given by

l ¼ 1:293� 10�4X�5:51 þ 13:71ð Þ�0:5145
; (26)

where this function is plotted together with the measured data

from Fig. 4 in Fig. 5. It is worth mentioning that the data are

well-fitted in the range of 0:05 < X < 0:5, and most of the

data are also clustered in this range. The increase in the SAC

due to the edge effect is greatest in the mid-frequency range

and for thicker materials, making the curve fitting in this

range the most important. Outside this range, the data are

scattered due to the uncertainties of the measurement men-

tioned in Sec. III. The empirical formula addresses the short-

comings of the quarter-wavelength approach. Specifically, it

addresses two issues: (1) For frequencies below 1000 Hz, the

value of l deviates from 0.25. (2) The value of l for the

medium frequency range is only slightly above 0. 25 and

thus is close to the theoretical value of 0.25. Furthermore, uti-

lizing a straightforward empirical function is more conve-

nient compared to intricate calculation using numerical

integration15 or approximate analytical formulas,16 which

requires an in-depth understanding of acoustics.

It is important to note that the empirical method is not

flawless, as shown by the data distribution in Fig. 5. Even

though the thickness and density of the material have been

taken into account, the data remains dispersed. It might be

possible to reduce the spread by using other physical or

acoustical properties of the materials such as the imaginary

parts of the specific acoustic admittances, the five or six

parameters of the equivalent fluid model,21 or the airflow

resistivity used by the Delany-Bazley model.31 However,

obtaining those properties can be difficult and requires addi-

tional experimental testing. This also complicates the

FIG. 4. (Color online) The edge effect parameter l as a function of X for

the materials of Table I.

FIG. 5. The scatterplot of the measured data about the empirical function.
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empirical model calculations and elevates the barrier for

implementing this method, as users may not have access to

the necessary parameters. By contrast, the thickness and

density of a material are among the most easily determin-

able properties, and they have a great impact on its acousti-

cal performance. The references in Table I also do not

provide detailed material properties, with the exception of

Northwood and Thomasson, which obstructs further

research on the edge effect phenomenon and the empirical

function. In summary, the proposed empirical function is

currently the optimal solution. The next section compares

the empirical method with other estimation methods to ver-

ify its feasibility.

V. ESTIMATION OF THE ABSORPTION COEFFICIENT
OF AN ABSORBER FROM A DIFFERENT SIZE

To validate the empirical equation, it has been used to

estimate the absorption coefficient of an absorber sample

from measurements on a different size sample of the same

material. Thomasson’s method, the first and second geomet-

ric methods and the analytical method16 have also been used

to estimate the SAC from a different size sample. There are

four versions of analytical method in Ref. 16 and this paper

uses the most optimal one to compare with the other meth-

ods. The first geometric method follows Eq. (18), the second

geometric method follows Eq. (22) and the method

using the empirical function is given by Eqs. (9) and (26).

Figure 6 illustrates the performance of the different methods

for estimating the random incidence SAC for samples of

H1, Sauro’s S1, Thomasson, and Northwood. The dashed

lines are the predicted data and the solid lines are the mea-

sured data. The figures on the left side present the results of

predicting large size samples from small size samples, while

the figures on the right side show the reverse. More specifi-

cally, a large sample size corresponds to a lower relative

edge length, whereas a small sample size corresponds to a

larger relative edge length. The results show that after size

correction, the estimated values are consistent with the mea-

sured values for all approaches, except for a discrepancy for

predicting S1 using the first geometric method. This is the

reason why it is necessary to carry out interpolation for the

geometric method. The empirical function performs well

especially for predicting small size samples from large size

samples.

To compare different approaches, the root mean square

error (RMSE) has been used to evaluate the results for both

direction (small to large or large to small). Due to the lim-

ited SAC data provided by the references, only 12 samples

have been used to compare different approaches, which are

shown in Table II. Without correction in the table represents

the RMSE between the experimental data of small size sam-

ple and large size sample. The RMSE for no correction is

larger for most materials, indicating that the measured SAC

significantly depends on the sample’s geometric properties.

According to the mean of RMSE of all methods, it is shown

that the empirical function is a reliable method to estimate

the SAC from different size samples, which reduces the

RMSE value by almost half compared to no correction.

Thomasson’s approach, the analytical method and the sec-

ond geometric method are applicable to all materials, which

effectively reduces the RMSE value. However, the first geo-

metric method may not be reliable for some materials and

may not be as effective for estimating small size samples

from large size samples. The corrections from those meth-

ods significantly reduce the RMSE value for samples of H1,

H3, Sauro’s S1, Thomasson, Kawai, Northwood, and

Davern. The RMSE value decreases by at least 50% and by

up to 80% for these samples. The results for other samples

also get better when using those estimation methods. It can

be noted that the estimation results show greater significance

for the samples that are impacted by a high degree of the

edge effect, and those sound absorbing materials usually are

thick or have high sound absorption.

The empirical function has a consistent RMSE value

regardless of the direction of estimation. However, the other

methods have higher errors when estimating a small size

sample from large size sample than vice versa. Therefore,

the empirical function is the most accurate method for esti-

mating a small sample from a large sample among the five

methods. The analytical method is the most accurate way

for predicting a full-size sample from a small size sample,

though this method is complicated. In addition, the second

geometric method is recommended as an alternative to the

analytical method, as it is less complex and easier to apply.

Although Thomasson’s method is the simplest to calculate,

it is less competitive in terms of accuracy compared to other

methods. The first geometric method may not always be

reliable; it sometimes produces ridiculous results such as

sample S1 and S3 but sometimes performs very well for pre-

dicting large size samples. In conclusion, the empirical

method has proven to be useful for estimating the SAC of an

absorber of a different size.

VI. CONCLUSION

This study investigated the SAC measurement results in

a reverberation room. A new empirical function was intro-

duced to predict the random incidence SAC of a sample

based on SAC measurements on another size sample of the

same material. The experimental data from 24 distinct mate-

rials obtained from multiple sources were analyzed to assess

the impact of the edge effect. The results indicate that the

edge effect significantly influences the mid-frequency range

(250 Hz to 2 kHz) and that the width of the apparent addi-

tional area of the sound absorber is approximately equal to a

quarter wavelength within this range. The empirical function

was derived from these measurements and the linear rela-

tionship between the SAC and the relative edge length, and

the implementation of the empirical function only requires

the values of the material thickness and the density.

Thomasson’s method, the two geometric methods, and the

analytical method were used and compared with the empiri-

cal method. The results demonstrate that each approach has

its strengths for estimating the SAC of samples of different
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sizes. Among the five approaches, the empirical function

performed best for predicting small size samples from large

size samples. The great advantage of the empirical method

is that it produces the same errors in each direction. The

analytical method was found to be the most accurate

approach for estimating full size samples from small size

samples. However, this method involves complex formulas

and requires a thorough understanding of acoustics. The

geometric method which uses interpolation as a function of

the SAC is also recommended as a simpler alternative to the

analytical method, while still maintaining a reasonable level

of accuracy. The proposed empirical function offers a new

solution for estimating the random incidence SAC of sam-

ples with different sizes of the same material by applying

the edge effect theory in practice. This research is valuable

for estimating the SAC of a room. SAC data provided by

FIG. 6. (Color online) Estimation of the SACs from another size sample of the same material using five different methods.
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manufacturers are measured in standard dimensions, but the

surfaces in a room that contribute to sound absorption vary

in size and shape, making it difficult to estimate the SAC

accurately. The empirical function method can be used to

obtain a more precise SAC for a room’s specific surfaces,

resulting in a more accurate estimate of the room’s SAC.

This study could be expanded by employing alternative

approaches such as machine learning techniques,32 provided

that sufficient measurement data were available.
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