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ABSTRACT:

The sound absorption coefficient (SAC) of materials measured in a reverberation room is affected by both the
intrinsic properties of the material and geometrical dimensions of the sample. A different size of the same material
may produce a different SAC primarily due to the edge effect phenomenon. In this research, the experimental data
from multiple laboratories was analyzed to evaluate the influence of the edge effect. An empirical function was
established based on these measurement data and the linear relationship between the SAC and the relative edge
length. Thomasson’s method, the two geometric methods, and the analytical method were used to estimate the SAC
of an absorber from measurements on a different size sample and compared with results obtained using the empirical
function. The results show that the proposed empirical method is a reliable way to predict the SAC of a sample from
measurements on a different size sample of the same material, which only requires the thickness, density, and size of

the material. © 2023 Acoustical Society of America. https://doi.org/10.1121/10.0022384
(Received 13 June 2023; revised 18 October 2023; accepted 30 October 2023; published online 13 November 2023)
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I. INTRODUCTION

The sound absorption coefficient (SAC), as measured in
a reverberation room, depends not only on the material
properties but also depends on the geometrical properties of
the tested sample. A well-known observation is the measure-
ment result of the SAC in a reverberation room, where it
exceeds 1. Furthermore, varying the size of samples made
of the same material can result in substantial differences in
SAC measurements, especially for materials with high
sound absorption. This occurrence is referred to as the “edge
effect” and was discovered by Sabin in the early 1900s. In
theory, it is caused by the diffraction of the incident wave at
the discontinuity in the imaginary part of the specific acous-
tic admittance at the edges of the sample. Therefore, the
sound pressure incident on the sample is greater due to the
sudden change of the imaginary part of the specific acoustic
admittance at the edges, and this increase leads to additional
absorption near the edges of the sample. According to the
early literature,'”” there is a linear relationship between
the SAC obtained by the reverberation room method and the
sample’s size as shown in the following equation:

o= oy + PE, (1)

where o is the SAC of a finite size sample measured in a
reverberation room, o is the true absorption coefficient
whose value may be equal to the absorption coefficient of an
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infinite-size sample, f is a constant, and E is the sample’s
relative edge length which is the ratio of the perimeter
divided by the area of the sample. The details of the process
of using linear regression to obtain the constants is shown in
Fig. 1. Measurement of four different size samples from the
identical material allows one to graph SACs as a function of
the relative edge length and fit them with linear regression
lines, where f3 is the slope of the linear regression and o is
the constant of the linear regression.

Since the early 1900s, numerous theoretical and experi-
mental studies have been conducted on the edge effect phe-
nomenon. A theoretical study by Morse and Bolt® showed
that, for normally incident sound, the additional absorption
caused by sound diffraction is approximately equal to the
product of the quarter wavelength of the sound, the edge
length of the specimen and the difference of the acoustic
susceptance of the material and the acoustic susceptance of
the surface surrounding the sample. Cook’ plotted the SAC
as a function of the area from experimental data to fit the
linear regression of Eq. (1) and calculated the values of f8
and the corresponding c. Similar research was performed
by Daniel,” where in addition to proving the linear relation-
ship, he measured the distribution of sound pressure at the
surface of a square panel and suggested that the additional
absorption is proportional to the inverse of the square root
of the sample’s area. Ten Wolde® verified the linear relation-
ship by comparing the o obtained from impedance tube
measurements with those extrapolated from reverberation
room measurements. This research confirmed that the
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FIG. 1. (Color online) (a) The measured SAC of the same material with different sizes. (b) Relationship between the SAC and the relative edge length, with
linear regression lines for fitting. (c) The slope of the linear regression. (d) The constant of the linear regression.

extrapolation of the linear relationship can be used to esti-
mate the true absorption coefficient og. Bruijn’ tried to
explain the linear relationship by using a mathematical
model. He derived a formulation to examine the interaction
between the two local edge diffraction fields of an acoustic
strip and he found that the additional absorption heavily
depends on the sample’s geometry for small patches.
Bartel'” compared experimental data with theoretical data
of the random incidence SAC, confirming that both results
increase linearly with the relative edge length. More
researchers including Kosten,' Khul,2 Gompex’ts,4 Esche,5
Dekker,"'! Vercammen and Lautenbach,'? and Hughes
et al."® observed the linear relationship by plotting the SAC
data as a function of the relative edge length of the speci-
men. Despite numerous researchers calculating f# and a,
few have put them into practical use. In fact, this linear rela-
tionship can be utilized to estimate the random incidence
SAC of samples with different sizes of the same material. It
might act as a complement to the ISO 354 standard,'* which
imposes restrictions on the size of the test sample.

Several methods have been established to put the theory
of edge effect into practice. Thomasson'® predicted the SAC
of one size sample from other size samples of the same
material by introducing the maximum SAC that only
depends on the sample’s geometrical properties. It means
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that the SAC of different shapes of the same material can be
determined by an equivalent of the maximum SAC and the
SAC of an infinite-size sample can also be calculated. The
draft version of the new ISO 354 standard incorporates
Thomasson’s approach and proposes a simpler method for
estimation; however, this draft was ultimately rejected in
spring of 2023. It assumes the constant f§ is one-quarter of
the wavelength (% A), which means that the width of the
extended virtual surface along the edge (the area of addi-
tional absorption) is equal to the value of %)v. A comparison
of i}. with the value calculated from Thomasson’s method
was made by Zhao et al.,16 who extended Thomasson’s the-
ory to the non-locally reacting material, which indicated that
i)u is not correct for low SACs. Additionally, they modified
Thomasson’s linear interpolation method to improve the
accuracy of predicting the SAC of a large size sample from
a small size sample. It also gives corrections which are dif-
ferent for increasing and decreasing sizes. While their
approximate analytical approach does decrease the compu-
tation time, it still has some disadvantages such as compli-
cated formulas and limited available material experimental
data. Sauro er al.'’ plotted the absorption divided by the
perimeter as a function of the area divided by the perimeter
and fitted to data points using linear regression line for each
one-third octave band. They presented a new equation to
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estimate the sound absorption of a material of any size, but
their approach requires at least two (and preferably more)
different sample sizes to be measured in a reverberation
room initially. While this is the preferred method if rever-
beration measurements on multiple size samples are avail-
able, the aim of this paper is to develop a method using a
measurement on only one size of sample whose correction
is independent of whether the sample size is being increased
or decreased. Other literature related to the edge effect
includes enhancing the theoretical prediction of the random
incidence SAC for sound-absorbing materials or making
measurements on a small sample group of theatre
chairs.'#2° Despite this, there is still room for further exam-
ination and study. Based on the discussions presented, the
implementation of the theory for practical applications
remains challenging.

Given this context, the goal of this study is to formulate
a straightforward empirical equation for calculating the ran-
dom incidence SAC of a material for different sizes of sam-
ples. The critical aspect of this equation is determining an
average value of the constant § which varies between mate-
rials due to its connection to material properties.
Consequently, the research described in this paper is com-
menced by collecting all available data on the SAC of dif-
ferent size samples of the same material in the literature for
24 materials and different laboratories to investigate the
characteristics of the relative edge length multiplier f and
f/2. In addition, an empirical function is proposed utilizing
all the collected experimental data, which only requires the
thickness and density of the material. It allows one to predict
the SAC of a sample of one size from measurements on
another size of the same sound absorbing material without
repeated measurements or complicated calculations. None
of the other material properties, such as the acoustic imped-
ance or the six parameters of the Johnson-Champoux-
Allard-Lafarge model®' are needed. The feasibility of the
proposed method is verified by comparing it with other esti-
mation methods including Thomasson’s method, the two
geometric methods, and the analytical method proposed by
Zhao et al.'®

This paper begins by describing the theory of the edge
effect estimation methods including linear relationship
method, Thomasson’s method, and geometric method in
Sec. II. The database of materials and data analysis is
described in Sec. III. Section IV presents the development
of the empirical equation and Sec. V compares the results
from the proposed empirical function with the results from
the other estimation methods. Finally, some further sugges-
tions are made.

Il. METHODOLOGY
A. Linear relationship method

An equation for calculating the sound absorption of one
size of sample from the measured sound absorption of two
other sizes of samples of the same materials was derived by
Sauro et al.,17
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)

where A is the sound absorption, S is the area, and P is the
perimeter. The subscript x denotes the sample size whose
sound absorption is being calculated, and subscript 1 and
subscript 2 denotes the two different sample sizes which
have been measured in a reverberation room. In this study,
the authors rewrite Eq. (2). First, divide both sides by S,
and the equation becomes

A, Aq S P,
X _ ¢ ——Cx— — 3
Sx +<P1 XPI)XSA" ()
where
Ay A
_ Py P
C_ﬁ_ﬂ. 4
Py Py
Then, make
Ay S
k=——Cx—. 5
PP )

Equation (3) can be written as

A‘C P,\'
SX_C—i—kaX. (©6)
It is obvious that the Eq. (6) is similar with Eq. (1)
because A, /S, is the SAC to be calculated and P,/S, is the
relative edge length. Consequently, as long as the SACs and
the geometry of two different sample sizes of the material
are known, it is possible to estimate the SAC of other size
samples of the same material. Looking at Eq. (1), once the
constant f is known, the SAC of other size samples can be
estimated from the SAC of one size sample as follows:

o = (o = PE) + PEx = o+ B(Ex — E), ©)

where o, is the SAC of the size of sample to be predicted,
and its relative edge length is E.. o is the SAC of a sample
measured in the reverberation room with the relative edge
length E. The width of the area subject to the increased pres-
sure is proportional to the wavelength of the incidence
sound.”> Thus, it makes sense to divide f§ by the sound
wavelength 4. Then, Eq. (1) becomes

o= oy + ulE, )
where u = 3/ and Eq. (7) can be written as
% = o+ pi(Ex — E). )

1 is often assumed to be equal to 0.25.
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B. Thomasson’s method

The edge effect causes the sample to be perceived as
having a larger surface area than its actual size, commonly
known as the virtual area. The factor K is expressed as the
ratio between the virtual area S’ and the actual area S of the

sample, as depicted in the following equation:'*'>1
A AE
K= 5= 1+ i (10)

Then, the SAC of an infinite sample can be expressed
as

(1)

O(OZE.

Similarly, for a sample size whose SAC is to be pre-
dicted, the factor K, can be written as

AE,
Kp=1+ 4’.

12)

The absorption coefficient of a material ap with a size
different from that measured in the reverberation room can
be estimated using linear interpolation in ¢ between equat-
ing the o values for the two different size samples when
oo = 1 and equating the SACs for the two different size
samples when oy = 0 using the following equation:

K
ap = oy {aOK—;—k(l —oco)}, (13)

where K, is calculated for the measured sample using Eq.
(10) and oy, is the SAC of the measured sample. This
method is based on one of Thomasson’s proposed
approaches.'” While this method utilizes one-quarter wave-
length for extending the virtual surface, it is worth noting
that Thomasson’s theory also presents a more intricate
approach for calculating this extension width.

C. Geometric method

In the geometric method, the extra area is assumed to
be the area outside the specimen which has a maximum dis-
tance of some value (usually one quarter of a wavelength)
from the specimen in a direction normal to one of the edges
of the rectangular specimen.’'®*® This means that the exter-
nal squares at each of the four corners whose side length is
the maximum distance are not included in the extra external
area. The extra external area is considered to be the extra
area from which the specimen can absorb sound due to the
diffraction effect. However, the other interpretation is that
the extra area is the area inside the specimen area which
absorbs more sound energy due to the increase in sound
pressure caused by diffraction. This extra area is the area
inside the specimen which has a maximum distance of some
value (usually one quarter of a wavelength) from the speci-
men edge in a direction normal to one of the edges of the
rectangular specimen. In the case of Thomasson’s method,
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this interpretation means that the areas of the squares at
each of the four corners whose side length is the maximum
distance is counted twice. There is an argument for counting
the areas of these squares twice because they are within the
maximum normal distance from two edges of the specimen.
However, there is also an argument for not counting these
areas twice and, in this case, it also makes sense not to allow
the strips of extra area due to the opposite edges of the
specimen to overlap. This approach limits the maximum
extra inside area to be equal to the area of the specimen.
Author R.A.H. adopted this approach and found that assum-
ing that the width of the additional area was half of the
wavelength worked well for the materials whose measured
sound absorption he was using for testing. This is not sur-
prising given the known variation of /i between different
materials. His equation for the extra virtual area of the mea-
sured sample is

Ty = 2amby — (am — 2dy) (b — 2d.,). (14)
His equation for the extra virtual area of a sample

whose SAC to be predicted is

Ty = 2apb, — (ap — 2dp) (b,, - 2d1/7>7 (15)
where
1 )
Eam,p foray, < 4,
dmp = 1 (16)
Ei foray, > 4
and
1
Ebm"" for by, <4,
dyp=1 ; (17)
Ei for by, > i

In the above equations, a and b are the side lengths of a
sample. d is the width of strip with a length of @ and d’ is the
width of strip with length of b. Subscript m denotes the mea-
sured sample and p denotes the predicted sample.
Subsequently, the SAC of a different-sized sample can be
estimated through measurement of a single-sized sample
using the following equation:

SuT,

18
S,T’ (18)

Op = Oy
where S,, = a,,b,, and S, = a,b,. This method called the first
geometric method.

Like Thomasson, the author R.A.H. also found it neces-
sary to carry out interpolation as a function of the SAC.
Thus, the intermediate value of the SAC for the measured
sample becomes

/ Sm

o, = Oy

—_—. 1
b= (19)
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Then, the equation for the extra virtual area of the mea-
sured sample is

T, =Sy + (T — Syl .

m

(20)

The equation for the extra virtual area of a sample
whose SAC to be predicted is
2n

T, =S, + (T, — Sp)a,.
Similarly, the second geometric method which uses lin-
ear interpolation is given by

ST,

1
oy = Om—="7-
4 m !

ST

(22)

lll. EXPERIMENTAL DATA ANALYSIS

This section investigates the phenomenon of the edge
effect using experimental data and compares them with the
theory. To characterize the edge effect of the sound absorb-
ers, this research gathered all the published data on the edge
effect from multiple sources. References 4, 6, and 10-12
directly provided the value of 5 but for Refs. 13, 15, 17, 24,
and 25 it was necessary to calculate 5 by using linear regres-
sion on their provided SAC data for each frequency, follow-
ing the procedure in Fig. 1. The samples used, their material
information, the volume of the associated reverberation
room, and the sources of the data are listed in Table I. The
selected samples were installed as one area of material, and

TABLE I. The measurements from multiple sources that were analyzed.

their edges were covered with a non-absorptive material.
This study does not consider the measurement of separated
pieces of material where there are gaps between each sepa-
rated piece of material. The experimental results for samples
Hl to H4 were measured in the Armstrong Acoustics
Laboratory using the ASTM-C423 standard.?® The reverber-
ation room has a volume of 264.7 m® with total surface area
of 255 m?, and it is equipped with 8 diffuser panels, totalling
a diffuser surface area of 64 m?. It is noteworthy that sam-
ples from two sources, which have similar information
regarding material type, thickness, and density, are believed
to be of the same material, despite being obtained from dif-
ferent participating laboratories. Because of the varying
specimen geometries, quantities of samples of various sizes,
and diverse experimental results, those data are still valuable
and deserving of analysis due to their diversity.

Figure 2(a) displays the edge effect relative parameter f§
as function of frequencies for all materials from Table 1. At
the first glance, the plot appears to be chaotic, but the most
of data is distributed between 0.2 and O in the y axis direc-
tion. The trend of all curves exhibits an increase to a peak
and then slowly decreases. To figure out the influence of the
frequency on the edge effect, the average value of f§ for each
one-third octave band centre frequency from all samples is
depicted in Fig. 2(b), and the error bars represent the uncer-
tainty of the 95% confidence intervals. There is a peak at
500 Hz, indicating that the edge effect is significant at this
frequency for most materials. It seems likely that the mate-
rial properties of the test specimen may affect the strength
of the edge effect at different frequencies. However, the

Sample Thickness [mm]  Density [kg/m3] Quantity of various sizes Material type Volume of reverberation room [m°] Source
HI 50.8 102.84 4 glass wool 264.7 experiment
H2 254 193.5 4 mineral wool 264.7 experiment
H3 254 102.84 4 glass wool 264.7 experiment
H4 25.4 193.5 4 mineral wool 264.7 experiment
Gomperts, M1 50 100 12 mineral wool 400 Ref. 4
Gomperts, M2 100 100 6 mineral wool 400 Ref. 4
Sauro, S1 25.4 102.84 9 glass wool 275 Ref. 17
Sauro, S2 50.8 102.84 4 glass wool 275 Ref. 17
Sauro, S3 50.8 102.84 4 glass wool 275 Ref. 17
Thomasson 50 50 3 mineral wool 200 Ref. 15
Hughes 50.8 6 5 ultralight foam 291.7 Ref. 13
Kawai 25 32 4 glass wool 317.4 Ref. 24
Bartel, M1 52 50 8 glass wool 425 Ref. 10
Bartel, M2 15 140 8 glass wool 425 Ref. 10
Bartel, M3 13 330 8 weed fiber 425 Ref. 10
Ten Wolde, A 50 100 10 mineral wool 199 Ref. 6
Ten Wolde, B 100 60 10 mineral wool 199 Ref. 6
Ten Wolde, C 38 90 10 straw fibre 199 Ref. 6
Ten Wolde, D 20 90 12 straw fibre 199 Ref. 6
Vercammen 100 44 unknown mineral wool 214 Refs. 12,29
Dekker, M1 16 90 8 straw fibre 33.7 Ref. 11
Dekker, M2 40 60 7 glass wool 33.7 Ref. 11
Northwood 50 100 3 mineral wool unknown Ref. 25
Davern 50 100 3 mineral wool 607 Ref. 27
J. Acoust. Soc. Am. 154 (5), November 2023 Zhao etal. 3045


https://doi.org/10.1121/10.0022384

(@) 025
020

0.15

~—~ 0.10

|—— Gomperts,M1
[—— Gomperts,M2
[—e— Sauro, $1
Sauro, S2
-= - Sauro, S2
-4 - Thomasson
v - Hughes

< 0.05
QU

0.00 ¥ -
-0.05

-0.10
-0.13

Bartel, M1
Bartel, M2

|
50 100 500 1000 10000 | ‘ :Barle\ A
Frequency (Hz) . .o - Ten Wolde,A

Ten Wolde,B
- = Ten Wolde,C
-~ Ten Wolde,D
-+ Vercammen

010 |/l\]\( i\{ .

iy |-« Dekker, M1

E il /}/ N [~ Notiood

RS —}/{ \{\{\{/{\{/}\Y -~ bavem
0.00 -

-0.05 . . . .

50 100 500 1000 2000 10000
Frequency (Hz)

v

(b) 015

—e— Mean

FIG. 2. (Color online) (a) The measured edge effect parameter f§ as a func-
tion of frequency for the materials listed in Table 1. (b) The mean of all § as
function of frequency. The error bars represent the 95% confidence
intervals.

additional sound absorption of the materials basically occurs
between 250 and 2000 Hz, which is consistent with the the-
ory, since the difference between the specific acoustic sus-
ceptance of most materials and their surrounding surface
area is lower in the low-frequency range. In the high-
frequency range, the area of the specimen subject to the
increased acoustic pressure is small because the wavelength
of sound in air is small, and thus the edge effect is also
small. However, there is a reasonable discrepancy in experi-
mental data compared to the theory. The uncertainty of the
experimental slope f in the low-frequency range'* is large
due to high measurement uncertainty of the SACs because
of low statistical modal overlap of the reverberation rooms
and the low SACs of most materials. In the high frequency
range, the uncertainty of the experimental slope f is a result
of the small differences between the measured SACs and
moderate experimental uncertainty. Furthermore, the experi-
mental uncertainty could be increased due to varying
amounts of diffusivity between the different reverberation
rooms, especially for highly sound absorbing samples.'*"~%°
In conclusion, the impact of the edge effect on the SAC of
materials of varying sizes is found to be more significant at
medium frequencies compared to high and low frequencies,
regardless of whether the SAC values are obtained through
experiment or through theoretical calculation.

Since f is a function of the wavelength, it makes sense
to analyze the distribution of x = f// for all samples. The
data from Fig. 2(a) divided by the wavelength of the corre-
sponding frequency is shown in Fig. 3(a). Most of the values
of p are in the range from O to 0.6. The data generally
exhibit two types of curve trend. One is slowly increasing
and then steady decreasing. The other is to rise and fall
steadily like the first trend at the beginning, and then have
larger fluctuations at the higher frequencies. Those curves
with large oscillations may be caused by experimental
uncertainty. As the frequency increases, parameter pu is
increased due to the short wavelength. The mean of the data
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and the 95% confidence interval of the mean are demon-
strated in Fig. 3(b). To compare with the theory, the line of
1=10.25 is also shown. In Fig. 3(b), u is close to zero in the
low frequency before increasing to be close to 0.25 in the
mid-frequency range. Above 3 kHz the mean and the uncer-
tainty increase. From 630 Hz to 3.15 kHz, the experimental
mean value of u is close to 0.25, which is consistent with
the assumption that the width of additional area of the effec-
tive absorption surface is approximately equal to %/1. In the
high-frequency range, significant fluctuations are observed,
due to the uncertainty of measurement of the parameter u
when the sound wavelength is short. In conclusion, the quar-
ter wavelength width of the additional apparent area of the
specimen is not correct in the low frequency range. Based
on a review of the measurement database, an improved
method is proposed in Sec. IV.

IV. DEVELOPMENT OF THE EMPIRICAL EQUATION

To estimate the random incidence SAC with different
sizes of the same material, a simple empirical equation was
derived based on measurement data. Due to the influence of
the material properties, the thickness ¢ and the density p of
each material were used. The transformation function for
frequency f is

with p' = 1m—g37 (23)
where p’ represents the reference density used to normalize
X into a dimensionless quantity and ¢ is the speed of sound
in air. The exponent 0.17 is applied to cluster the measure-
ment data of materials, enhancing the suitability for curve-
fitting optimization. The x axis variable has been changed
from f to X, and the plot of the u as a function of X is
depicted in Fig. 4. Since the vertical scale (y axis) is

Zhao et al.
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FIG. 4. (Color online) The edge effect parameter u as a function of X for
the materials of Table 1.

logarithmic, the continuity of the data is interrupted by neg-
ative experimental values. One of the reasons for employing
a transformation function is to address the substantial influ-
ence of material thickness. In this study, measurements were
conducted on the same material with varying thicknesses (1,
2, and 4in.). The observed peaks, resulting from the edge
effect, demonstrated that doubling the thickness caused the
peak absorption frequency to shift down by one octave for
each doubling of thickness, while preserving the shape of
the peak. Experimental data for different thicknesses of the
same material indicated peak frequencies of approximately
1200-1250 Hz for the 1-in. sample, 600—650 Hz for the 2-in.
sample, and 300-325 Hz for the 4-in. sample. By applying
Eq. (23), the impact of thickness variation can be accounted
for in the analysis.

According to the new figure, all the experimental data
show the same trend, although there is a considerable spread
of the data. Based on the shape of the curves and the high
frequency theory, the following mathematical model was
proposed:

)

—c, !
= [(CIX*CZ *Q} L

+C3 (24)
The values of the constants C1-C4 were determined
using optimization. Other models such as polynomial func-
tions, Gaussian functions or other bell-shaped functions
were also tried but did not work any better. A MATLAB code
was developed to find the constants C1 to C4 that best fitted
all the experimental data, using the nonlinear curve-fitting
algorithm to minimize the mean square differences,””

mcin |F(C, xdata) — ydatal|;

I o Y — ydata)? 2
mCmZ( (C,xdata;) — ydata;)”, 25)

where F is objective function given by Eq. (10). The ele-
ments of the coefficient vector C are the parameters to be
estimated and xdata is the input data such as the frequency,
the speed of sound in air, the sample thickness, and the den-
sity. ydata are edge effect parameters u derived from all the
measured data. / is the number of data. In this paper, the
total number of data points is 391. After data preprocessing,
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the number of data points is reduced to 352 due to the elimi-
nation of negative data points.

The four parameters, C1-C4, were determined using
optimization (100.143, 2.835, 0.26, and 1.944, respectively).
Hence p and f§ could be predicted for any frequency, any
thickness and density of material. Once the SAC of a mate-
rial for one size of sample and its f§ are known, the SAC of
any size samples of the same material can be estimated
using Eq. (9). Inserting the values of the four constants into
Eq. (24), the final empirical function is given by

1= (1293 x 104X 55 4 13.71) "%,

(26)
where this function is plotted together with the measured data
from Fig. 4 in Fig. 5. It is worth mentioning that the data are
well-fitted in the range of 0.05 < X < 0.5, and most of the
data are also clustered in this range. The increase in the SAC
due to the edge effect is greatest in the mid-frequency range
and for thicker materials, making the curve fitting in this
range the most important. Outside this range, the data are
scattered due to the uncertainties of the measurement men-
tioned in Sec. III. The empirical formula addresses the short-
comings of the quarter-wavelength approach. Specifically, it
addresses two issues: (1) For frequencies below 1000 Hz, the
value of u deviates from 0.25. (2) The value of u for the
medium frequency range is only slightly above 0. 25 and
thus is close to the theoretical value of 0.25. Furthermore, uti-
lizing a straightforward empirical function is more conve-
nient compared to intricate calculation using numerical
integration'®> or approximate analytical formulas,'® which
requires an in-depth understanding of acoustics.

It is important to note that the empirical method is not
flawless, as shown by the data distribution in Fig. 5. Even
though the thickness and density of the material have been
taken into account, the data remains dispersed. It might be
possible to reduce the spread by using other physical or
acoustical properties of the materials such as the imaginary
parts of the specific acoustic admittances, the five or six
parameters of the equivalent fluid model,”' or the airflow
resistivity used by the Delany-Bazley model.>' However,
obtaining those properties can be difficult and requires addi-
tional experimental testing. This also complicates the
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FIG. 5. The scatterplot of the measured data about the empirical function.
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empirical model calculations and elevates the barrier for
implementing this method, as users may not have access to
the necessary parameters. By contrast, the thickness and
density of a material are among the most easily determin-
able properties, and they have a great impact on its acousti-
cal performance. The references in Table I also do not
provide detailed material properties, with the exception of
Northwood and Thomasson, which obstructs further
research on the edge effect phenomenon and the empirical
function. In summary, the proposed empirical function is
currently the optimal solution. The next section compares
the empirical method with other estimation methods to ver-
ify its feasibility.

V. ESTIMATION OF THE ABSORPTION COEFFICIENT
OF AN ABSORBER FROM A DIFFERENT SIZE

To validate the empirical equation, it has been used to
estimate the absorption coefficient of an absorber sample
from measurements on a different size sample of the same
material. Thomasson’s method, the first and second geomet-
ric methods and the analytical method'® have also been used
to estimate the SAC from a different size sample. There are
four versions of analytical method in Ref. 16 and this paper
uses the most optimal one to compare with the other meth-
ods. The first geometric method follows Eq. (18), the second
geometric method follows Eq. (22) and the method
using the empirical function is given by Eqgs. (9) and (26).
Figure 6 illustrates the performance of the different methods
for estimating the random incidence SAC for samples of
HI1, Sauro’s S1, Thomasson, and Northwood. The dashed
lines are the predicted data and the solid lines are the mea-
sured data. The figures on the left side present the results of
predicting large size samples from small size samples, while
the figures on the right side show the reverse. More specifi-
cally, a large sample size corresponds to a lower relative
edge length, whereas a small sample size corresponds to a
larger relative edge length. The results show that after size
correction, the estimated values are consistent with the mea-
sured values for all approaches, except for a discrepancy for
predicting S1 using the first geometric method. This is the
reason why it is necessary to carry out interpolation for the
geometric method. The empirical function performs well
especially for predicting small size samples from large size
samples.

To compare different approaches, the root mean square
error (RMSE) has been used to evaluate the results for both
direction (small to large or large to small). Due to the lim-
ited SAC data provided by the references, only 12 samples
have been used to compare different approaches, which are
shown in Table II. Without correction in the table represents
the RMSE between the experimental data of small size sam-
ple and large size sample. The RMSE for no correction is
larger for most materials, indicating that the measured SAC
significantly depends on the sample’s geometric properties.
According to the mean of RMSE of all methods, it is shown
that the empirical function is a reliable method to estimate
the SAC from different size samples, which reduces the
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RMSE value by almost half compared to no correction.
Thomasson’s approach, the analytical method and the sec-
ond geometric method are applicable to all materials, which
effectively reduces the RMSE value. However, the first geo-
metric method may not be reliable for some materials and
may not be as effective for estimating small size samples
from large size samples. The corrections from those meth-
ods significantly reduce the RMSE value for samples of HI,
H3, Sauro’s S1, Thomasson, Kawai, Northwood, and
Davern. The RMSE value decreases by at least 50% and by
up to 80% for these samples. The results for other samples
also get better when using those estimation methods. It can
be noted that the estimation results show greater significance
for the samples that are impacted by a high degree of the
edge effect, and those sound absorbing materials usually are
thick or have high sound absorption.

The empirical function has a consistent RMSE value
regardless of the direction of estimation. However, the other
methods have higher errors when estimating a small size
sample from large size sample than vice versa. Therefore,
the empirical function is the most accurate method for esti-
mating a small sample from a large sample among the five
methods. The analytical method is the most accurate way
for predicting a full-size sample from a small size sample,
though this method is complicated. In addition, the second
geometric method is recommended as an alternative to the
analytical method, as it is less complex and easier to apply.
Although Thomasson’s method is the simplest to calculate,
it is less competitive in terms of accuracy compared to other
methods. The first geometric method may not always be
reliable; it sometimes produces ridiculous results such as
sample S1 and S3 but sometimes performs very well for pre-
dicting large size samples. In conclusion, the empirical
method has proven to be useful for estimating the SAC of an
absorber of a different size.

VI. CONCLUSION

This study investigated the SAC measurement results in
a reverberation room. A new empirical function was intro-
duced to predict the random incidence SAC of a sample
based on SAC measurements on another size sample of the
same material. The experimental data from 24 distinct mate-
rials obtained from multiple sources were analyzed to assess
the impact of the edge effect. The results indicate that the
edge effect significantly influences the mid-frequency range
(250Hz to 2kHz) and that the width of the apparent addi-
tional area of the sound absorber is approximately equal to a
quarter wavelength within this range. The empirical function
was derived from these measurements and the linear rela-
tionship between the SAC and the relative edge length, and
the implementation of the empirical function only requires
the values of the material thickness and the density.
Thomasson’s method, the two geometric methods, and the
analytical method were used and compared with the empiri-
cal method. The results demonstrate that each approach has
its strengths for estimating the SAC of samples of different
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FIG. 6. (Color online) Estimation of the SACs from another size sample of the same material using five different methods.

sizes. Among the five approaches, the empirical function
performed best for predicting small size samples from large
size samples. The great advantage of the empirical method
is that it produces the same errors in each direction. The
analytical method was found to be the most accurate
approach for estimating full size samples from small size
samples. However, this method involves complex formulas
and requires a thorough understanding of acoustics. The
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geometric method which uses interpolation as a function of
the SAC is also recommended as a simpler alternative to the
analytical method, while still maintaining a reasonable level
of accuracy. The proposed empirical function offers a new
solution for estimating the random incidence SAC of sam-
ples with different sizes of the same material by applying
the edge effect theory in practice. This research is valuable
for estimating the SAC of a room. SAC data provided by
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TABLE II. The comparison of the RMSE between the experimental and predicted SAC for different approaches across the applicable frequency range

(Unit: 1072).
Empirical Thomasson’s Analytical 1st geometric 2nd geometric Without
Sample Target size function method method method method correction
H1 small to large 6.52 6.59 5.57 3.99 5.14 14.8
large to small 6.52 7.29 6.33 4.30 5.75 14.8
H2 small to large 3.53 3.06 2.96 4.24 3.20 4.20
large to small 3.53 3.12 3.09 4.62 3.42 4.20
H3 small to large 4.06 4.89 351 3.04 3.72 8.07
large to small 4.06 5.24 4.07 3.35 4.02 8.07
H4 small to large 3.79 3.13 3.00 4.28 3.26 435
large to small 3.79 3.19 3.15 4.66 3.50 435
Sauro, S1 small to large 13.4 12.2 11.4 14.4 10.1 26.3
large to small 13.4 13.8 13.2 34.8 16.7 26.3
Sauro, S2 small to large 11.5 11.6 11.3 11.5 11.1 13.0
large to small 11.5 11.8 11.5 12.1 11.4 13.0
Sauro, S3 small to large 7.35 7.18 7.02 8.70 7.28 8.10
large to small 7.35 7.35 7.23 10.2 7.78 8.10
Thomasson small to large 3.72 5.35 4.09 4.56 5.64 20.6
large to small 3.72 6.02 5.46 5.39 7.14 20.6
Hughes small to large 6.21 5.77 6.27 5.39 5.74 8.72
large to small 6.21 6.03 6.73 5.54 5.92 8.72
Kawai small to large 6.60 7.69 6.50 2.63 5.05 17.6
large to small 6.60 8.74 8.17 3.61 6.01 17.6
Northwood small to large 5.22 6.27 3.90 4.12 5.49 11.7
large to small 5.22 6.67 4.14 4.38 6.02 11.7
Davern small to large 1.73 2.00 1.95 2.36 2.12 4.35
large to small 1.73 2.08 1.99 2.53 2.28 4.35
Mean small to large 6.14 6.31 5.62 5.77 5.65 11.8
large to small 6.14 6.78 6.26 7.96 6.66 11.8

manufacturers are measured in standard dimensions, but the
surfaces in a room that contribute to sound absorption vary
in size and shape, making it difficult to estimate the SAC
accurately. The empirical function method can be used to
obtain a more precise SAC for a room’s specific surfaces,
resulting in a more accurate estimate of the room’s SAC.
This study could be expanded by employing alternative
approaches such as machine learning techniques,*” provided
that sufficient measurement data were available.
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